
Дистрибуирани софтверски системи
Технички факултет "Михајло Пупин" Зрењанин, Универзитет у Новом Саду
Скрипта за лабораторијске вежбе #01 [нерецензирани материјал]

1

JavaBeans Component Technology in Java

Introduction

JavaBeans makes it easy to reuse software components. Developers can use software components written
by others without having to understand their inner workings. Тo understand why software components are
useful, think of a worker assembling a car. Instead of building a radio from scratch, for example, she simply
obtains a radio and hooks it up with the rest of the car.

In Object Oriented Programming an object represents a person, place or thing that has attributes and
functions. These objects are implemented in Java as Java Beans. A Java Bean acts as a container for all of
the related attributes and functions associated with the object. Java Beans make it easy to pass all of the
related data associated with the object in single argument when calling function. This is particularly
important when making a Remote Procedure Call (RPC) to a function on a different server over the
network.

The server and client tiers might also include components based on the JavaBeans component architecture
(JavaBeans components) to manage the data flow between an application client or applet and components
running on the Java EE server, or between server components and a database. JavaBeans components are
not considered Java EE components by the Java EE specification.

JavaBeans components have properties and have get and set methods for accessing the properties.
JavaBeans components used in this way are typically simple in design and implementation but should
conform to the naming and design conventions outlined in the JavaBeans component architecture. Let's
start with an initial definition and then refine it:

"A Java Bean is a reusable software component that can be created and manipulated in a
software development tool."

Individual Java Beans will vary in the functionality they support, but the typical unifying features of a Java
Bean are:

 Support for introspection so that a software development tool can analyze how a bean works.

 Support for customization so that when using a software development tool a user can customize
the appearance and behavior of a bean.

 Support for events as a simple communication metaphor than can be used to connect up beans.

 Support for properties, both for customization and for programmatic use.

 Support for persistence, so that a bean can be customized in a software development tool and then
have its customized state saved away and reloaded later.



Дистрибуирани софтверски системи
Технички факултет "Михајло Пупин" Зрењанин, Универзитет у Новом Саду
Скрипта за лабораторијске вежбе #01 [нерецензирани материјал]

2

Writing JavaBeans

Writing beans assumes following certain coding conventions, which enables tools that use beans to
recognize and use your beans. Java Beans should follow the following rules:

1) They should implement the java.io.Serializable interface, which allows sending it over the network,
or reading and writing to a file.

2) They should implement a default constructor.

3) All variables should be accessed via public "get" and "set" methods. All variables should be declared
with private modifier, enabling encapsulation of data items and making Java Bean more modular. In
this way Java Bean maintains the integrity of the data.

4) Override the default constructor with a Constructor that sets the initial values of variables, which is
used for instantiating and initializing a Java Bean object.

5) Override the equals() method for comparing the contents of two objects for equality.

6) Override the hashCode() function to support sorting and searching of Java Bean objects stored
in collections.

Serialization of JavaBeans

Serializability of a class is enabled by the class implementing the java.io.Serializable interface.
Classes that do not implement this interface will not have any of their state serialized or deserialized. All
subtypes of a serializable class are themselves serializable. The serialization interface has no methods or
fields and serves only to identify the semantics of being serializable.

Serialization in java is implemented by ObjectInputStream and ObjectOutputStream, so all we
need is a wrapper over them to either save it to file or send it over the network. Static variable values are
not serialized since they belong to class and not object. The serialization mechanism automatically detects
references to other objects. As long as the "sub-objects" are also serializable, ObjectOutputStream
serializes them and includes them in the stream.

Java serialization process is done automatically. Sometimes we want to obscure the object data to maintain
its integrity. We can do this by implementing java.io.Externalizable interface and provide
implementation of writeExternal() and readExternal() methods to be used in serialization
process. Notice that order of writing and reading the extra data to the stream should be same. We can put
some logic in reading and writing data to make it secure.

Literature and Links

[1] Trail: JavaBeans(TM). https://docs.oracle.com/javase/tutorial/javabeans/index.html

[2] JavaBeans. Version 1.01-A. Sun Microsystems. 1997.

[3] Class Object. https://docs.oracle.com/javase/7/docs/api/java/lang/Object.html

[4] public interface Serializable. https://docs.oracle.com/javase/7/docs/api/java/io/Serializable.html

[5] public interface Externalizable extends Serializable.
https://docs.oracle.com/javase/7/docs/api/java/io/Externalizable.html

[6] Serialization in Java – Java Serialization. https://www.journaldev.com/2452/serialization-in-java


	JavaBeans Component Technology in Java
	Introduction
	Writing JavaBeans
	Serialization of JavaBeans
	Literature and Links


